We recall the definition of a continuous function on an open interval.
Definition 1. We say $f(x)$ is continuous at x_{0} if it is defined for $x \approx x_{0}$, and given $\epsilon>0,\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ holds for $x \approx x_{0}$.

We say $f(x)$ is continuous on the open interval I if is continuous at every point in I.

Next, we define the continuity of functions on closed intervals with positive length.

Definition 2. We say
$f(x)$ is right-continuous at x_{0} if given $\epsilon>0,\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ for $x \approx x_{0}^{+}$,
$f(x)$ is left-continuous at x_{0} if given $\epsilon>0,\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ for $x \approx x_{0}^{-}$,
$f(x)$ is continuous on $[a, b]$ with $a \neq b$ if it is continuous on (a, b), rightcontinuous at a, and left-continuous at b.

We can define the continuity on other intervals as follows:
Definition 3. We say $f(x)$ is continuous on $(a, b]$ if it continuous on (a, b) and left-continuous at b. We say $f(x)$ is continuous on $[a, b)$ if it is continuous on (a, b) and right-continuous at a.

We say $f(x)$ is continuous if the domain of $f(x)$ is an interval I with positive or infinite length, and it is continuous on I.

Let us consider some examples.
Example 4. $\tan x$ is not continuous.
Proof. The domain of $\tan x$ is $\mathbb{R} \backslash\left\{\left(n+\frac{1}{2}\right) \pi: n \in \mathbb{Z}\right\}$. Hence, it is not an interval.

Example 5. \sqrt{x} is continuous.
Proof. \sqrt{x} is defined on $[0,+\infty)$ which is an interval with finite length.
Given $\epsilon>0,|\sqrt{x}-\sqrt{0}|=\sqrt{x}<\epsilon$ holds for $x \in\left[0, \epsilon^{2}\right)$, namely \sqrt{x} is right-continuous at 0 .

Let $x_{0}>0$. Then, given $\epsilon>0$,

$$
\left|\sqrt{x}-\sqrt{x_{0}}\right|=\left|\frac{x-x_{0}}{\sqrt{x}+\sqrt{x_{0}}}\right|=\frac{\left|x-x_{0}\right|}{\sqrt{x_{0}}}<\epsilon,
$$

holds for $x \in\left(x_{0}-\epsilon \sqrt{x_{0}}, x_{0}+\epsilon \sqrt{x_{0}}\right) \cap(0,+\infty)$. Hence, $\left|\sqrt{x}-\sqrt{x_{0}}\right|<\epsilon$ in the δ-neighborhood of x_{0} where $\delta=\min \left\{x_{0}, \epsilon \sqrt{x_{0}}\right\}$.

Example 6. $\frac{1}{x^{2}+1}$ is continuous.
Proof. $\frac{1}{x^{2}+1}$ is defined on $(-\infty,+\infty)$ which is an interval with finite length. Next, we can derive the following inequality.

$$
\begin{aligned}
\left|f(x)-f\left(x_{0}\right)\right| & =\left|\frac{1}{1+x^{2}}-\frac{1}{1+x_{0}^{2}}\right|=\left|\frac{x_{0}^{2}-x^{2}}{\left(1+x^{2}\right)\left(1+x_{0}^{2}\right)}\right| \\
& \leq\left|x_{0}^{2}-x^{2}\right|=\left|x_{0}-x\right|\left|x_{0}+x\right| \leq\left|x_{0}-x\right|\left(\left|x_{0}\right|+|x|\right) .
\end{aligned}
$$

If $x \in\left(x_{0}-1, x_{0}+1\right)$ then $\left|x-x_{0}\right| \leq 1$. Hence, $|x| \leq\left|x_{0}\right|+\left|x-x_{0}\right| \leq\left|x_{0}\right|+1$. Therefore, given ϵ, for $x \in\left(x_{0}-1, x_{0}+1\right) \cap\left(x_{0}-\frac{\epsilon}{2\left|x_{0}\right|+1}, x_{0}+\frac{\epsilon}{2\left|x_{0}\right|+1}\right)$ the following holds

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq\left|x_{0}-x\right|\left(\left|x_{0}\right|+|x|\right)<\frac{\epsilon}{2\left|x_{0}\right|+1}\left(\left|x_{0}\right|+\left|x_{0}\right|+1\right)=\epsilon .
$$

Hence, $\left|\sqrt{x}-\sqrt{x_{0}}\right|<\epsilon$ in the δ-neighborhood of x_{0} where $\delta=\min \left\{1, \frac{\epsilon}{2\left|x_{0}\right|+1}\right\}$.

Example 7. e^{x} is continuous.
Proof. e^{x} is defined on $(-\infty,+\infty)$ which is an interval with finite length.
Next, we can derive the following inequality.

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|e^{x}-e^{x_{0}}\right|=e^{x_{0}}\left|e^{x-x_{0}}-1\right| .
$$

Hence, given $\epsilon>0$ we have

$$
\begin{aligned}
& \left|f(x)-f\left(x_{0}\right)\right|<\epsilon \\
\Longleftrightarrow & \left|e^{x-x_{0}}-1\right|<e^{-x_{0}} \epsilon \\
\Longleftrightarrow & 1-e^{-x_{0}} \epsilon<e^{x-x_{0}}<1+e^{-x_{0}} \epsilon \\
\Longleftrightarrow & \ln \left(1-e^{-x_{0}} \epsilon\right)<x-x_{0}<\ln \left(1+e^{-x_{0}} \epsilon\right) \\
\Longleftrightarrow & x_{0}-\ln \left(1-e^{-x_{0}} \epsilon\right)^{-1}<x<x_{0}+\ln \left(1+e^{-x_{0}} \epsilon\right) .
\end{aligned}
$$

Hence, $\left|e^{x}-e^{x_{0}}\right|<\epsilon$ in the δ-neighborhood of x_{0} where

$$
\delta=\min \left\{\ln \left(1-e^{-x_{0}} \epsilon\right)^{-1}, \ln \left(1+e^{-x_{0}} \epsilon\right)\right\} .
$$

Example 8. Let us define a function $f(x)$ by $f(x)=x \sin (1 / x)$ for $x \neq 0$ and $f(0)=0$. Show that $f(x)$ is continuous at 0 .
Proof. Given ϵ,

$$
|f(x)-f(0)|=|x \sin (1 / x)-0| \leq|x||\sin (1 / x)| \leq|x|<\epsilon,
$$

holds for $x \in(-\epsilon, \epsilon)$. Hence, $f(x)$ is continuous at 0 .

Example 9. Let us define a function $f(x)$ by $f(x)=\sin (1 / x)$ for $x \neq 0$ and $f(0)=b$. Show that there does not exist a number b such that $f(x)$ is continuous at 0.

Proof. Suppose that $f(x)$ is continuous at 0 for some $b=f(0)$. Then, there exists some $\delta>0$ such that $|f(x)-b|<1$ for $x \in(-\delta, \delta)$.

Let $a_{n}=\frac{1}{\left(2 n+\frac{1}{2}\right) \pi}$. Then,

$$
f\left(a_{n}\right)=\sin \frac{1}{a_{n}}=\sin \left(2 n+\frac{1}{2}\right) \pi=1 .
$$

Since $\lim a_{n}=0$ by Theorem 5.1, there exists large N such that $\left|a_{N}\right|<\delta$.
In the same manner, we let $b_{n}=\frac{1}{\left(2 n+\frac{3}{2}\right) \pi}$. Then,

$$
f\left(b_{n}\right)=\sin \frac{1}{b_{n}}=\sin \left(2 n+\frac{3}{2}\right) \pi=-1
$$

Since $\lim b_{n}=0$ by Theorem 5.1, there exists large M such that $\left|b_{M}\right|<\delta$.
Therefore, we have $|1-b|=\left|f\left(a_{N}\right)-b\right|<1$ and $|1+b|=\left|f\left(b_{M}\right)-b\right|<1$.
Hence, we have a contradiction as follows:

$$
2 \leq|1-b|+|1+b|<2
$$

Thus, $f(x)$ can not be continuous at 0 for any $b=f(0)$.

