
We recall the definition of a continuous function on an open interval.

Definition 1. We say f(x) is continuous at x0 if it is defined for x ≈ x0,
and given ε > 0, |f(x)− f(x0)| < ε holds for x ≈ x0.

We say f(x) is continuous on the open interval I if it is continuous at
every point in I.

Next, we define the continuity of functions on closed intervals with positive
length.

Definition 2. We say
f(x) is right-continuous at x0 if given ε > 0, |f(x)− f(x0)| < ε for x ≈ x+0 ,
f(x) is left-continuous at x0 if given ε > 0, |f(x)− f(x0)| < ε for x ≈ x−0 ,
f(x) is continuous on [a, b] with a 6= b if it is continuous on (a, b), right-
continuous at a, and left-continuous at b.

We can define the continuity on other intervals as follows:

Definition 3. We say f(x) is continuous on (a, b] if it is continuous on
(a, b) and left-continuous at b. We say f(x) is continuous on [a, b) if it is
continuous on (a, b) and right-continuous at a.

We say f(x) is continuous if the domain of f(x) is an interval I
with positive or infinite length, and it is continuous on I.

Let us consider some examples.

Example 4. tanx is not continuous.

Proof. The domain of tanx is R \ {(n + 1
2)π : n ∈ Z}. Hence, it is not an

interval. �

Example 5.
√
x is continuous.

Proof.
√
x is defined on [0,+∞) which is an interval with finite length.

Given ε > 0, |
√
x −
√

0| =
√
x < ε holds for x ∈ [0, ε2), namely

√
x is

right-continuous at 0.
Let x0 > 0. Then, given ε > 0,

|
√
x−
√
x0| =

∣∣∣ x− x0√
x+
√
x0

∣∣∣ =
|x− x0|√

x0
< ε,

holds for x ∈ (x0 − ε
√
x0, x0 + ε

√
x0) ∩ (0,+∞). Hence, |

√
x−√x0| < ε in

the δ-neighborhood of x0 where δ = min{x0, ε
√
x0}. �

1



2

Example 6. 1
x2+1

is continuous.

Proof. 1
x2+1

is defined on (−∞,+∞) which is an interval with finite length.
Next, we can derive the following inequality.

|f(x)− f(x0)| =
∣∣∣ 1

1 + x2
− 1

1 + x20

∣∣∣ =
∣∣∣ x20 − x2

(1 + x2)(1 + x20)

∣∣∣
≤ |x20 − x2| = |x0 − x||x0 + x| ≤ |x0 − x|(|x0|+ |x|).

If x ∈ (x0−1, x0+1) then |x−x0| ≤ 1. Hence, |x| ≤ |x0|+ |x−x0| ≤ |x0|+1.
Therefore, given ε, for x ∈ (x0 − 1, x0 + 1) ∩ (x0 − ε

2|x0|+1 , x0 + ε
2|x0|+1) the

following holds

|f(x)− f(x0)| ≤ |x0 − x|(|x0|+ |x|) <
ε

2|x0|+ 1
(|x0|+ |x0|+ 1) = ε.

Hence, |
√
x−√x0| < ε in the δ-neighborhood of x0 where δ = min{1, ε

2|x0|+1}.
�

Example 7. ex is continuous.

Proof. ex is defined on (−∞,+∞) which is an interval with finite length.
Next, we can derive the following inequality.

|f(x)− f(x0)| = |ex − ex0 | = ex0 |ex−x0 − 1|.
Hence, given ε > 0 we have

|f(x)− f(x0)| < ε

⇐⇒ |ex−x0 − 1| < e−x0ε

⇐⇒ 1− e−x0ε < ex−x0 < 1 + e−x0ε

⇐⇒ ln(1− e−x0ε) < x− x0 < ln(1 + e−x0ε)

⇐⇒ x0 − ln(1− e−x0ε)−1 < x < x0 + ln(1 + e−x0ε).

Hence, |ex − ex0 | < ε in the δ-neighborhood of x0 where

δ = min{ln(1− e−x0ε)−1, ln(1 + e−x0ε)}.
�

Example 8. Let us define a function f(x) by f(x) = x sin(1/x) for x 6= 0
and f(0) = 0. Show that f(x) is continuous at 0.

Proof. Given ε,

|f(x)− f(0)| = |x sin(1/x)− 0| ≤ |x|| sin(1/x)| ≤ |x| < ε,

holds for x ∈ (−ε, ε). Hence, f(x) is continuous at 0.
�
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Example 9. Let us define a function f(x) by f(x) = sin(1/x) for x 6= 0
and f(0) = b. Show that there does not exist a number b such that f(x) is
continuous at 0.

Proof. Suppose that f(x) is continuous at 0 for some b = f(0). Then, there
exists some δ > 0 such that |f(x)− b| < 1 for x ∈ (−δ, δ).

Let an = 1
(2n+ 1

2
)π

. Then,

f(an) = sin
1

an
= sin

(
2n+

1

2

)
π = 1.

Since lim an = 0 by Theorem 5.1, there exists large N such that |aN | < δ.
In the same manner, we let bn = 1

(2n+ 3
2
)π

. Then,

f(bn) = sin
1

bn
= sin

(
2n+

3

2

)
π = −1.

Since lim bn = 0 by Theorem 5.1, there exists large M such that |bM | < δ.
Therefore, we have |1− b| = |f(aN )− b| < 1 and |1 + b| = |f(bM )− b| < 1.

Hence, we have a contradiction as follows:

2 ≤ |1− b|+ |1 + b| < 2.

Thus, f(x) can not be continuous at 0 for any b = f(0).
�


