We recall the definition of a continuous function on an open interval.

Definition 1. We say f(x) is continuous at zq if it is defined for x = x,
and given € > 0, |f(x) — f(xo)| < € holds for x = xy.

We say f(z) is continuous on the open interval I if it is continuous at
every point in 1.

Next, we define the continuity of functions on closed intervals with positive
length.

Definition 2. We say
f(z) is right-continuous at xq if given € > 0, |f(z) — f(wo)| < € for z ~ ad,
f(x) is left-continuous at xq if given € > 0, |f(x) — f(xo)| < € for x =z,
f(x) is continuous on [a,b] with a # b if it is continuous on (a,b), right-
continuous at a, and left-continuous at b.

We can define the continuity on other intervals as follows:

Definition 3. We say f(x) is continuous on (a,b] if it is continuous on
(a,b) and left-continuous at b. We say f(x) is continuous on [a,b) if it is
continuous on (a,b) and right-continuous at a.

We say f(z) is continuous if the domain of f(z) is an interval I
with positive or infinite length, and it is continuous on I.

Let us consider some examples.
Example 4. tanx is not continuous.

Proof. The domain of tanz is R\ {(n + )7 : n € Z}. Hence, it is not an
interval. (]

Example 5. \/z is continuous.

Proof. \/z is defined on [0, +00) which is an interval with finite length.
Given € > 0, |v/z — V0| = v/ < € holds for 2 € [0,¢?), namely \/z is
right-continuous at 0.
Let g > 0. Then, given € > 0,
x — x|

rﬁ—ﬁ—\g;”jﬁ\—’%

holds for x € (z¢ — €\/Tg, o + €,/Tg) N (0, +00). Hence, |\/z — \/Zg| < € in
the 0-neighborhood of zp where § = min{x, €,/Zo}. O

< €,
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Example 6. 18 continuous.

m2+1

Proof. oc%-i-l is defined on (—oo, +00) which is an interval with finite length.
Next, we can derive the following inequality.

1 )
[f(@) = flzo)] = 1+a22 1—|—azg‘ N ’(1+x2)(1+x%)
< |af —2?| =

2 _ 2

|z0 — z||zo + x| < |zo — @[(|zo] + [2).
If v € (xg—1,z0+1) then |z —x¢| < 1. Hence, |z| < |zo|+ |z —x0| < |z0|+1.

Therefore, given e, for z € (xg — 1,20 + 1) N (xg — m,xo + 2\T€\+1) the

following holds
€
|f(x) = f(z0)| < |wo — z|(|z0] + [2]) < Sl 11

Hence, |/z—/Tg| < €in the d-neighborhood of zy where § = min{1

(lzol + |zol +1) = €.

) o1

Example 7. €* is continuous.

Proof. e* is defined on (—oo, +00) which is an interval with finite length.
Next, we can derive the following inequality.

[f(x) = flzo)| = [e¥ — €™ = ™" —1].
Hence, given € > 0 we have
() — flwo)| < e
= e — 1| < e e
= 1—e Me<e® M <14 e "¢
<= In(1l —e ™€) <z —1xp <In(l+e )
— z0—In(1 —e ™)™t <2 <z +In(1 4 e ™).
Hence, |e® — e™| < € in the d-neighborhood of xy where
§ = min{In(1 — ™€)~ In(1 4 e~™¢)}.
([

Example 8. Let us define a function f(z) by f(z) = xsin(1/z) for x # 0
and f(0) = 0. Show that f(z) is continuous at 0.

Proof. Given e,
[f (@) = f(0)] = |wsin(1/z) — 0] < [z[|sin(1/z)| < |z| <,

holds for x € (—¢,€). Hence, f(x) is continuous at 0.
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Example 9. Let us define a function f(x) by f(x) = sin(1/x) for x # 0
and f(0) = b. Show that there does not exist a number b such that f(z) is
continuous at 0.

Proof. Suppose that f(x) is continuous at 0 for some b = f(0). Then, there
exists some ¢ > 0 such that |f(z) —b| < 1 for x € (=4,9).

Let a,, = (2n+1%)7r' Then,
flap) = sini = sin (2n + 1)77 =1.
an, 2
Since lim a,, = 0 by Theorem 5.1, there exists large N such that |ay| < 4.
In the same manner, we let b, = m Then,

1 . 3
f(by) = sin — = sin (2n+ 5)77 =-1.

n
Since lim b, = 0 by Theorem 5.1, there exists large M such that |bys| < 4.
Therefore, we have |1 —b| = |f(an) —b] < 1 and |14b| = |f(bar) —b| < 1.
Hence, we have a contradiction as follows:
2<1 -0 +]1+0 <2

Thus, f(x) can not be continuous at 0 for any b = f(0).



